Effects of radiation, curvature, and preferential diffusion on the extinction of laminar non-premixed flames

Author:

Gao Yushan1,Han Wang23ORCID,Chen Zheng4ORCID,Fu Qingfei23ORCID,Yang Lijun23ORCID

Affiliation:

1. Science and Technology on Liquid Rocket Engine Laboratory, Xi’an Aerospace Propulsion Institute, Xi’an 710100, China

2. School of Astronautics, Beihang University, Beijing 100191, China

3. Aircraft and Propulsion Laboratory, Ningbo Institute of Technology, Beihang University, Ningbo 315100, China

4. SKLTCS, CAPT, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China

Abstract

The combined effects of radiative heat loss, curvature, and preferential diffusion on laminar non-premixed flames (or flamelets) are investigated in this work by using asymptotic analysis. A general theoretical description of flame temperature and extinction is derived for curved flames with non-unity Lewis numbers and radiative heat loss. Special attention is paid to the effects of curvature and radiative heat loss on the flammability limits. The results show that (1) a curved flamelet always has two extinction limits: one is the kinetic extinction limit, and the other is the curvature-induced extinction limit for the adiabatic case or the radiative extinction limit for the radiative case; (2) the curvature exerts a different influence on the adiabatic and radiative flames. Specifically for the adiabatic flame, it is found that both flame temperature and flame position significantly decrease as the curvature increases and that a new extinction limit at a low stretch rate occurs due to the existence of curvature. Furthermore, a higher curvature coupled with the increase in the Lewis number results in a lower flammability limit and narrower flammable zone. Therefore, the presence of curvature has a negative impact on the adiabatic flame. On the contrary, for the radiative flame, the results show that the increase in curvature has a positive effect on the flammability limit and thereby increases the flammable zone. It is expected that curved flamelets hold smaller (larger) flammable zones than planar flamelets under the adiabatic (radiative) condition. All results show that the change in flame curvature has a stronger effect on the flame structure and extinction than the deviation of the Lewis number from unity.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3