Design of a flexing organ-chip to model in situ loading of the intervertebral disc

Author:

McKinley Jonathan P.1ORCID,Montes Andre R.1ORCID,Wang Maple N.2ORCID,Kamath Anuya R.2,Jimenez Gissell1,Lim Jianhua2,Marathe Siddharth A.2,Mofrad Mohammad R. K.1ORCID,O’Connell Grace D.1ORCID

Affiliation:

1. Department of Mechanical Engineering, University of California Berkeley, Berkeley, California 94720, USA

2. Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, USA

Abstract

The leading cause of disability of all ages worldwide is severe lower back pain. To address this untreated epidemic, further investigation is needed into the leading cause of back pain, intervertebral disc degeneration. In particular, microphysiological systems modeling critical tissues in a degenerative disc, like the annulus fibrosus (AF), are needed to investigate the effects of complex multiaxial strains on AF cells. By replicating these mechanobiological effects unique to the AF that are not yet understood, we can advance therapies for early-stage degeneration at the cellular level. To this end, we designed, fabricated, and collected proof-of-concept data for a novel microphysiological device called the flexing annulus-on-a-chip (AoC). We used computational models and experimental measurements to characterize the device’s ability to mimic complex physiologically relevant strains. As a result, these strains proved to be controllable, multi-directional, and uniformly distributed with magnitudes ranging from [Formula: see text]% to 12% in the axial, radial, and circumferential directions, which differ greatly from applied strains possible in uniaxial devices. Furthermore, after withstanding accelerated life testing (66 K cycles of 10% strain) and maintaining 2000 bovine AF cells without loading for more than three weeks the AoC proved capable of long-term cell culture. Additionally, after strain (3.5% strain for 75 cycles at 0.5 Hz) was applied to a monolayer of AF cells in the AoC, a population remained adhered to the channel with spread morphology. The AoC can also be tailored for other annular structures in the body such as cardiovascular vessels, lymphatic vessels, and the cervix.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,General Materials Science,Fluid Flow and Transfer Processes,Colloid and Surface Chemistry,Biomedical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3