Mode couplings in multiplex electromechanical structures

Author:

Sayed Ahmed Moustafa1ORCID,Ghommem Mehdi2ORCID,Shahab Shima1ORCID

Affiliation:

1. Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA

2. Department of Mechanical Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates

Abstract

Mode couplings associated with elastic wave propagation through three-dimensional multiplex structures, as manifested by asymmetric eigenmodes and dissipation, determine the efficiency of electromechanical structures. As a result, it is critical to predict electroelastic symmetric modes such as thickness expander and radial modes, as well as asymmetric flexural modes, while accounting for material losses. Multiplex electromechanical structures include multi-layered through-wall ultrasound power transfer (TWUPT) systems. Physical processes that support TWUPT include vibrations at a transmitting/acoustic source element, elastic wave propagation through a barrier and coupling layers, piezoelectric transduction of elastic vibrations at a receiving element, and spatial resonances of the transmitting and receiving elements. We investigate mode couplings in an optimized modal TWUPT system, including their physical origins, models used to describe them, and regimes of weak and strong couplings. The system layout optimization is defined in terms of size (volume), operating frequency, and matching circuit load optimization. A computational model is developed and utilized in conjunction with experimental modal characterization to highlight the impact of eigenmode features on optimization results. Several behavioral modes are identified and analyzed. The interaction of symmetric radial and asymmetric flexural modes causes the system damping to increase and the device's overall efficiency to decrease. The electromechanical coupling factor value is likewise reduced as a result of this. Such occurrences are explained by the flow of energy between modes as they interact. The present work also proposes design guidelines to improve the performance of TWUPT systems based on exploiting inherent physical phenomena.

Funder

Division of Electrical, Communications and Cyber Systems

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3