Substrate-independent thermal conductance of Al/graphene/dielectric interfaces from 80 to 300 K

Author:

Zheng Weidong1ORCID,Shao Cheng1ORCID,Zhang Chunwei2ORCID,Guo Weijia3ORCID,Li Hongkun4ORCID

Affiliation:

1. Thermal Science Research Center, Shandong Institute of Advanced Technology 1 , Jinan, Shandong 250103, China

2. College of Automotive Engineering, Jilin University 2 , Changchun, Jilin 130025, China

3. Department of Mechanical Engineering, Beijing Institute of Technology 3 , Beijing 300081, China

4. School of Mechanical Engineering, Southwest Jiaotong University 4 , Chengdu, Sichuan 610031, China

Abstract

Despite the importance of physical understanding of interfacial thermal conductance (G) for metal/graphene (Gr)/dielectric interfaces, there exists a large discrepancy regarding the role of dielectric substrates in thermal transport across graphene interfaces in previous studies. In this work, we experimentally investigate the impact of dielectric substrates on thermal transport across metal/Gr/dielectric interfaces through accurately measuring G for various Al/Gr/dielectric interfaces over a temperature range of 80–300 K, using both standard time-domain thermoreflectance (TDTR) and differential TDTR. We find that G of Al/Gr/dielectric falls within the range of 29–36 MW m−2 K−1 at room temperature and displays notably weak substrate dependence even with the dielectric Debye temperature ranging from 500 to 1050 K. This substrate independence is attributed to the dominant role of phonon transmission at metal/Gr interfaces in thermal transport across metal/Gr/dielectric interfaces, and the insignificant impacts of phonon density of states overlap on G for Gr/dielectric interfaces. Moreover, through the comparison of our measured G for both Gr/crystalline-Al2O3 and Gr/amorphous-Al2O3, we demonstrate that contrary to previous predictions, the crystalline and amorphous forms of dielectrics do not play a substantial role in thermal transport across graphene interfaces. Our work fills the gap in experimental data on G for metal/Gr/dielectric interfaces and provides valuable insights into physical understanding of thermal transport mechanisms across such interfaces.

Funder

Natural Science Foundation of Shandong Province

National Natural Science Foundation of China

Sichuan Science and Technology Program

China Postdoctoral Science Foundation

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3