Evaluating the energy storage performance of polymer blends by phase-field simulation

Author:

Ma Zhe1ORCID,Shen Zhong-Hui12ORCID,Liu Run-Lin2ORCID,Chen Xiao-Xiao2,Shen Yang3ORCID,Chen Long-Qing4ORCID,Nan Ce-Wen3

Affiliation:

1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology 1 , Wuhan 430070, China

2. School of Materials and Microelectronics, Wuhan University of Technology 2 , Wuhan 430070, China

3. School of Materials Science and Engineering, State Key Lab of New Ceramics and Fine Processing, Tsinghua University 3 , Beijing 100084, China

4. Department of Materials Science and Engineering, The Pennsylvania State University 4 , University Park, Pennsylvania 16802, USA

Abstract

Polymer blends are regarded as a straightforward and effective method to enhance the energy storage performance of dielectric film capacitors. However, how the components and structures within the blend systems affect the energy density and efficiency remains insufficiently explored in-depth. In this discourse, employing a polymer blend of ferroelectric and linear dielectric phases as a paradigm, we perform phase-field simulations to elucidate the effects of ferroelectric phase volume fractions, geometrical dimensions, and the dielectric constant of the linear phase on the energy storage capabilities. Concurrently, we have devised six divergent blending microstructures to probe the ramifications of structural variances on the overarching performance metrics. We also analyze the domain configurations and switching dynamics under varying electric fields to understand the performance variations and delineate the determinants conducive to superior energy density and efficiency. This paper theoretically establishes the component–content–structure–performance relationships of different polymer blend systems, which is expected to better guide the innovative design of new polymer blend dielectrics.

Funder

Major Research Plan

National Natural Science Foundation of China

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3