Electric double layer of spherical pH-responsive polyelectrolyte brushes in an electrolyte solution: A strong stretching theory accounting for excluded volume interaction and mass action law

Author:

Sin Jun-Sik1ORCID,Choe Il-Chon1,Im Chol-Song2

Affiliation:

1. Natural Science Center, Kim Il Sung University, Taesong District, Pyongyang, Democratic People's Republic of Korea

2. Faculty of Koryo medicine, Pyongyang University of Medical Sciences, Pyongyang, Democratic People's Republic of Korea

Abstract

In this paper, we study the electrostatics of pH-responsive polyelectrolyte-grafted spherical particles by using a strong stretching theory that takes into account the excluded volume interaction and the density of chargeable sites on the polyelectrolyte molecules. Based on free energy formalism, we obtain self-consistent field equations for determining the structure and electrostatics of spherical polyelectrolyte brushes. First, we find that the smaller the radius of the inner core, the longer the height of the polyelectrolyte brush. Then, we also prove that an increase in the excluded volume interaction yields a swelling of the polyelectrolyte brush height. In addition, we demonstrate how the effect of pH, bulk ionic concentration, and lateral separation between adjacent polyelectrolyte chains on the electrostatic properties of a spherical polyelectrolyte brush is affected by the radius of the inner core, the excluded volume interaction, and the chargeable site density.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3