A mixing timescale model for differential mixing in transported probability density function simulations of turbulent non-premixed flames

Author:

Wei Jieli1ORCID,Su Xingyu2,Wang Xiao1,Zhou Hua1ORCID,Hawkes Evatt R.3,Ren Zhuyin12ORCID

Affiliation:

1. Institute for Aero Engine, Tsinghua University, Beijing 100084, China

2. Center for Combustion Energy, Tsinghua University, Beijing 100084, China

3. School of Manufacturing and Mechanical Engineering, University of New South Wales, Sydney, NSW 2052, Australia

Abstract

The modeling of scalar mixing timescale remains a primary challenge in the transported probability density function (TPDF) method. The variation of scalar mixing timescale among species, i.e., differential mixing, results from the difference in molecular diffusivity and reaction-induced scalar gradient. Nevertheless, the vast majority of TPDF studies on turbulent non-premixed flames simply apply a single mixing timescale determined by the mixture fraction. In this work, a reaction-induced differential mixing timescale (RIDM) model for the mixing timescale of individual species in turbulent non-premixed flames is proposed. The key idea of the RIDM model is to approximate the relative magnitude of the species dissipation rates by using their values in laminar flamelets. A direct numerical simulation dataset of a temporally evolving non-premixed ethylene flame is employed to thoroughly evaluate the model performance via a priori and a posteriori tests. Results show that specifying a single mixing timescale for all species results in a poor prediction of the species dissipation rate and thus the failure to predict the overall combustion process. By accounting for the difference in molecular diffusivity, a slightly better prediction can be obtained, but the improvement is very limited, illustrating that simply modeling the difference due to molecular diffusivities for differential mixing is not sufficient. In comparison, the RIDM model exhibits superior performance in both a priori and a posteriori tests. Moreover, all the components of the RIDM model are readily available in the TPDF method, making the RIDM model a promising candidate employed in practice.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

National Science and Technology Major Project

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3