HfZrOx-based capacitive synapses with highly linear and symmetric multilevel characteristics for neuromorphic computing

Author:

Zhu Ying1,He Yongli1ORCID,Chen Chunsheng1,Zhu Li1,Mao Huiwu1,Zhu Yixin1,Wang Xiangjing1,Yang Yang1,Wan Changjin1ORCID,Wan Qing1ORCID

Affiliation:

1. School of Electronic Science and Engineering, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China

Abstract

A hardware based artificial neural network (ANN), which holds the potential to alleviate the computation load and energy of a digital computer, has propelled the development of memory devices that can resemble the synapse. Memcapacitors, especially based on ferroelectric materials, with theoretically no static power, nondestructive readout, and multiple polarization states, are expected to have good energy efficiency and endurance as emerging artificial synapses. However, conventional ferroelectric devices are characterized with extremely high remnant polarization, which requires high energy for polarization state updating and always leads to low linearity and symmetry in updating properties. Here, we show a memcapacitive synapse based on an Au/HfZrOx (HZO)/Au ferroelectric memcapacitor with moderate remnant polarization that can offer unexceptionable updating properties for building an ANN. The memcapacitor demonstrates more than 64 weight states with an ultralow weight updating energy of ≤3.0 fJ/ μm2. Both potentiation and depression synaptic characteristics show an ultralow non-linearity of <10−2. Based on these properties, a two-layer restricted Boltzmann machine is built based on this memcapacitive synapse, and it can be trained to reconstruct incomplete images. The reconstructed images show reduced Euclidean distance to originals in comparison with that of the incomplete images. Furthermore, the memcapacitive synapse is also tested by a handwritten digits recognition task based on a simple perceptron, and the pattern recognition accuracy is as high as 93.4%. These results indicate that the HZO-based capacitive synapse devices have great potential for future high-efficiency neuromorphic systems.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3