Large photoluminescence enhancement in the chlorophyll from the energy transfer in perovskite–chlorophyll hybrid derivatives

Author:

Feria Denice Navat1ORCID,Luo Yi-Shiuan1,Hsu Bing-Kuan1,Tseng Yu-Chien1ORCID,Lian Jan-Tian1ORCID,Lin Tai-Yuan1ORCID

Affiliation:

1. Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung 202301, Taiwan

Abstract

Determining the photophysical processes for biomaterial–semiconductor systems has been beneficial for developing optoelectronic devices that exhibit biodegradability and biocompatibility. Here, we systematically investigated the optical properties and photophysical mechanisms of CsPbBr3 nanoparticles (NPs)-incorporated chlorophyll material. Steady-state photoluminescence (PL) studies reveal a large fluorescence enhancement in the chlorophyll once the perovskite was incorporated in the pristine chlorophyll with an associated PL quenching of the CsPbBr3 emission. A spectral overlap was measured from the PL and absorption spectra of CsPbBr3 NPs and chlorophyll indicative of a Förster-type resonance energy transfer (FRET). Using time-resolved PL, faster PL decay curves were observed from the CsPbBr3 NPs in the mixture suggesting that most of its energy was transferred to the chlorophyll. The corresponding Jablonski diagram was built and the energy transfer parameters, such as FRET efficiencies and transfer rates, were calculated to fully explain the FRET process. Slow PL degradation for the mixtures was also observed, highlighting the advantage of the FRET proposed. The demonstration of the photophysical mechanism in biomaterial–semiconductor systems is influential in improving the performance of emerging bio-inspired optoelectronic devices.

Funder

Ministry of Science and Technology, Taiwan

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3