Fluorine spillover for ceria- vs silica-supported palladium nanoparticles: A MD study using machine learning potentials

Author:

Liu Da-Jiang1ORCID,Evans James W.12ORCID

Affiliation:

1. Division of Chemical and Biological Sciences, Ames National Laboratory—USDOE 1 , Ames, Iowa 50011, USA

2. Department of Physics and Astronomy, Iowa State University 2 , Ames, Iowa 50011, USA

Abstract

Supported metallic nanoparticles play a central role in catalysis. However, predictive modeling is particularly challenging due to the structural and dynamic complexity of the nanoparticle and its interface with the support, given that the sizes of interest are often well beyond those accessible via traditional ab initio methods. With recent advances in machine learning, it is now feasible to perform MD simulations with potentials retaining near-density-functional theory (DFT) accuracy, which can elucidate the growth and relaxation of supported metal nanoparticles, as well as reactions on those catalysts, at temperatures and time scales approaching those relevant to experiments. Furthermore, the surfaces of the support materials can also be modeled realistically through simulated annealing to include effects such as defects and amorphous structures. We study the adsorption of fluorine atoms on ceria and silica supported palladium nanoparticles using machine learning potential trained by DFT data using the DeePMD framework. We show defects on ceria and Pd/ceria interfaces are crucial for the initial adsorption of fluorine, while the interplay between Pd and ceria and the reverse oxygen migration from ceria to Pd control spillover of fluorine from Pd to ceria at later stages. In contrast, silica supports do not induce fluorine spillover from Pd particles.

Funder

Office of Science

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3