Robust unfolding of MeV x-ray spectra from filter stack spectrometer data

Author:

Wong C.-S.1ORCID,Strehlow J.1ORCID,Broughton D. P.1ORCID,Luedtke S. V.1ORCID,Huang C.-K.1ORCID,Bogale A.2,Fitzgarrald R.3ORCID,Nedbailo R.4ORCID,Schmidt J. L.1,Schmidt T. R.1ORCID,Twardowski J.5ORCID,Van Pelt A.14ORCID,Alvarez M. Alvarado1ORCID,Junghans A.1ORCID,Mix L. T.1ORCID,Reinovsky R. E.1,Rusby D. R.6ORCID,Wang Z.1ORCID,Wolfe B.1ORCID,Albright B. J.1ORCID,Batha S. H.1ORCID,Palaniyappan S.1

Affiliation:

1. Los Alamos National Laboratory 1 , Los Alamos, New Mexico 87545, USA

2. Center for Energy Research, University of California - San Diego 2 , La Jolla, California 92093, USA

3. Center for Ultrafast Optical Science, University of Michigan 3 , Ann Arbor, Michigan 48109, USA

4. Center for High Energy Density Science, University of Texas 4 , Austin, Texas 78712, USA

5. Materials Science and Engineering, The Ohio State University 5 , Columbus, Ohio 43210, USA

6. Lawrence Livermore National Laboratory 6 , Livermore, California 94551, USA

Abstract

We present an inversion method capable of robustly unfolding MeV x-ray spectra from filter stack spectrometer (FSS) data without requiring an a priori specification of a spectral shape or arbitrary termination of the algorithm. Our inversion method is based upon the perturbative minimization (PM) algorithm, which has previously been shown to be capable of unfolding x-ray transmission data, albeit for a limited regime in which the x-ray mass attenuation coefficient of the filter material increases monotonically with x-ray energy. Our inversion method improves upon the PM algorithm through regular smoothing of the candidate spectrum and by adding stochasticity to the search. With these additions, the inversion method does not require a physics model for an initial guess, fitting, or user-selected termination of the search. Instead, the only assumption made by the inversion method is that the x-ray spectrum should be near a smooth curve. Testing with synthetic data shows that the inversion method can successfully recover the primary large-scale features of MeV x-ray spectra, including the number of x-rays in energy bins of several-MeV widths to within 10%. Fine-scale features, however, are more difficult to recover accurately. Examples of unfolding experimental FSS data obtained at the Texas Petawatt Laser Facility and the OMEGA EP laser facility are also presented.

Funder

U.S. Department of Energy

Los Alamos National Laboratory

Publisher

AIP Publishing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3