Phononic Weyl pair, phononic Weyl complex, phononic real Chern insulator state, and phononic corner modes in 2D Kekulé-order graphene

Author:

Li Jianghua1ORCID,Liu Ying2,Bai Jingbo1,Xie Chengwu3,Yuan Hongkuan1ORCID,Cheng Zhenxiang4ORCID,Wang Wenhong3ORCID,Wang Xiaotian1ORCID,Zhang Gang5ORCID

Affiliation:

1. School of Physical Science and Technology, Southwest University 1 , Chongqing 400715, China

2. School of Materials Science and Engineering, Hebei University of Technology 2 , Tianjin 300130, China

3. School of Electronics & Information Engineering, Tiangong University 3 , Tianjin 300387, China

4. Institute for Superconducting and Electronic Materials (ISEM), University of Wollongong 4 , Wollongong 2500, Australia

5. Institute of High-Performance Computing, Agency for Science, Technology and Research (A*STAR) 5 , 138632 Singapore, Singapore

Abstract

The conceptual framework of topological states has recently been extended to bosonic systems, particularly phononic systems. In this work, we chose the recently experimentally prepared two-dimensional (2D) Kekulé-order graphene as a target to propose the coexistence of gapless and gapped topological phonon states in its phonon curves. This is the first work to investigate rich gapped and gapless topological phonon states in experimentally feasible 2D materials. For the gapped topological phonons, 2D Kekulé-order graphene hosts phononic real Chern insulator states, i.e., second-order topological states, and corner vibrational modes inside frequency gaps at 27.96 and 37.065 THz. For the gapless topological phonons, 2D Kekulé-order graphene hosts a phononic Weyl pair [comprising two linear Weyl points (LWPs)] and a phononic Weyl complex [comprising one quadratic nodal point (QNP) and two LWPs] around 7.54 and 47.3 THz (39.2 THz), respectively. Moreover, the difference between the phononic Weyl pair and the phononic Weyl complex was investigated in detail. Our study not only promotes 2D Kekulé-order graphene as a concrete material platform for exploring the intriguing physics of phononic second-order topology but also proposes the coexistence of different categories of Weyl phonons, i.e., a Weyl complex that comprises two LWPs and one QNP, in two dimensions. Our work paves the way for new advancements in topological phononics comprising gapless and gapped topological phonons.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Chongqing Municipality

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3