Dynamical analysis of a class of SEIR models through delayed strategies

Author:

Alfwzan Wafa F.1ORCID,Baleanu Dumitru234ORCID,Raza Ali45ORCID,Rafiq Muhammad6ORCID,Ahmed Nauman47ORCID

Affiliation:

1. Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University 1 , P.O. Box 84428, Riyadh 11671, Saudi Arabia

2. Department of Mathematics, Cankaya University 2 , Balgat, Ankara 06530, Türkiye

3. Institute of Space Sciences 3 , Magurele-Bucharest 077125, Romania

4. Department of Computer Science and Mathematics, Lebanese American University 4 , Beirut, Lebanon

5. Department of Mathematics, Government Maulana Zafar Ali Khan Degree College, Wazirabad, Higher Education Department, Government of Punjab 5 , Lahore, Pakistan

6. Department of Mathematics, Faculty of Science and Technology, University of Central Punjab 6 , Lahore 54000, Pakistan

7. Department of Mathematics and Statistics, University of Lahore 7 , Lahore 54590, Pakistan

Abstract

In recent decades, the mathematical modeling of infectious diseases, real-world problems, non-linear dynamical complex systems, etc., has increased significantly. According to World Health Organization, tobacco use is the cause of about 22% of cancer deaths. Another 10% are due to obesity, poor diet, lack of physical activity, and excessive drinking of alcohol. Approximately 5%–10% of cancers are due to inherited genetic defects. The objective is to investigate the impact of time delays in implementing control measures on the epidemic dynamics. The classification of cell population has four compartments: susceptible cells (x), cancer-infected cells (y), virus-free cells (v), and immune cells (z). Our focus is to find the equilibria of the problem and their stability. The stability of the solutions is of two types: locally asymptotic and globally asymptotic. The Routh–Hurwitz criterion, Volterra-type Lyapunov function, and LaSalle’s invariance principle are used to verify the stability of solutions. The graphical behavior depicts the stable solutions to a real-world problem and supports the stability analysis of the problem. The findings contribute to the understanding of epidemic dynamics and provide valuable information for designing and implementing effective intervention strategies in public health systems.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3