The influence of magnetic vortices motion on the inverse ac Josephson effect in asymmetric arrays

Author:

Chesca Boris1ORCID,Gaifullin Marat12,John Daniel1,Cox Jonathan13,Savel'ev Sergey1,Mellor Christopher4ORCID

Affiliation:

1. Department of Physics, Loughborough University, Loughborough LE11 3TU, United Kingdom

2. SuperOx Japan LLC, Sagamihara 252-0243, Japan

3. School of Computer Science, University of Lincoln, Lincoln LN6 7TS, United Kingdom

4. School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom

Abstract

We report on the influence a preferential magnetic vortices motion has on the magnitude of the inverse ac Josephson effect (the appearance of dc current Shapiro steps) and the coherent operation of asymmetrical parallel arrays of YBa2Cu3O7−δ Josephson junctions (JJ) irradiated with microwave (MW) radiation in the presence of an applied magnetic field B. The preferential direction of motion of the Josephson vortices is due to the asymmetry-induced ratchet effect and has a dramatic impact: for a particular positive dc bias current I when the flux-flow is robust multiple pronounced Shapiro-steps are observed consistent with a coherent operation of the array. This suggests an efficient emission/detection of MW in related applications. In contrast, when we reverse the direction of I, the flux-flow is reduced and the Shapiro steps are strongly suppressed due to a highly incoherent operation that suggests an inefficient emission/detection of MW. Remarkably, by changing B slightly, the situation is reversed: Shapiro steps are now suppressed for a positive I while well pronounced for a reverse current − I. Our results suggest that a preferential vortex-flow has a very significant impact on the coherent MW operation of superconducting devices consisting of either multiple JJs or an asymmetrically biased single long JJ. This is particularly relevant in the case of flux-flow oscillators for sub-terahertz integrated-receivers, flux-driven Josephson (travelling-wave) parametric amplifiers, or on-chip superconducting MW generators, which usually operate at bias currents in the Shapiro step region.

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3