Scale filtering analysis of kinetic reconnection and its associated turbulence

Author:

Adhikari Subash1ORCID,Yang Yan2ORCID,Matthaeus William H.2ORCID,Cassak Paul A.1ORCID,Parashar Tulasi N.3ORCID,Shay Michael A.2ORCID

Affiliation:

1. Department of Physics and Astronomy and the Center for KINETIC Plasma Physics, West Virginia University 1 , Morgantown, West Virginia 26506, USA

2. Department of Physics and Astronomy, University of Delaware 2 , Newark, Delaware 19716, USA

3. School of Chemical and Physical Sciences, Victoria University of Wellington 3 , Wellington 6012, New Zealand

Abstract

Previously, using an incompressible von Kármán–Howarth formalism, the behavior of cross-scale energy transfer in magnetic reconnection and turbulence was found to be essentially identical to each other, independent of an external magnetic (guide) field, in the inertial and energy-containing ranges [Adhikari et al., Phys. Plasmas 30, 082904 (2023)]. However, this description did not account for the energy transfer in the dissipation range for kinetic plasmas. In this Letter, we adopt a scale-filtering approach to investigate this previously unaccounted-for energy transfer channel in reconnection. Using kinetic particle-in-cell simulations of antiparallel and component reconnection, we show that the pressure–strain interaction becomes important at scales smaller than the ion inertial length, where the nonlinear energy transfer term drops off. Also, the presence of a guide field makes a significant difference in the morphology of the scale-filtered energy transfer. These results are consistent with kinetic turbulence simulations, suggesting that the pressure strain interaction is the dominant energy transfer channel between electron scales and ion scales.

Funder

U.S. Department of Energy

NSF-DOE

NASA under MMS Theory. Modeling and Data Analysis

National Aeronautics and Space Administration

LWS Project under University of Maryland subcontract

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3