Discovery of sparse hysteresis models for piezoelectric materials

Author:

Chandra Abhishek1ORCID,Daniels Bram1ORCID,Curti Mitrofan1ORCID,Tiels Koen2ORCID,Lomonova Elena A.1ORCID,Tartakovsky Daniel M.3ORCID

Affiliation:

1. Electromechanics and Power Electronics Group, Department of Electrical Engineering, Eindhoven University of Technology 1 , 5600 MB Eindhoven, The Netherlands

2. Control Systems Technology Group, Department of Mechanical Engineering, Eindhoven University of Technology 2 , 5600 MB Eindhoven, The Netherlands

3. Department of Energy Science and Engineering, Stanford University 3 , 367 Panama Street, Stanford, California 94305, USA

Abstract

This article presents an approach for modeling hysteresis in piezoelectric materials that leverages recent advancements in machine learning, particularly in sparse-regression techniques. While sparse regression has previously been used to model various scientific and engineering phenomena, its application to nonlinear hysteresis modeling in piezoelectric materials has yet to be explored. The study employs the least squares algorithm with a sequential threshold to model the dynamic system responsible for hysteresis, resulting in a concise model that accurately predicts hysteresis for both simulated and experimental piezoelectric material data. Several numerical experiments are performed, including learning butterfly shaped hysteresis and modeling real-world hysteresis data for a piezoelectric actuator. The presented approach is compared to traditional regression-based and neural network methods, demonstrating its efficiency and robustness.

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3