Hybrid finite-amplitude periodic modes for two uniformly magnetized spheres

Author:

Carter P. Mitchell1ORCID,Edwards Boyd F.2ORCID

Affiliation:

1. Department of Physics, The University of Texas at Dallas 1 , Richardson, Texas 75080, USA

2. Department of Physics, Utah State University 2 , Logan, Utah 84322, USA

Abstract

We analyze a system of two uniformly magnetized spheres, one fixed and the other free to slide in frictionless contact with the surface of the first. The centers of the two magnets, and their magnetic moments, are restricted to a plane. We search for sets of initial conditions that yield finite-amplitude oscillatory periodic solutions. We extend two small-amplitude base modes, one with orbital and spin motions that are in phase and the other out of phase, to finite amplitudes and show that the motion for arbitrary oscillatory solutions can be considered to be a nonlinear superposition of these base modes. Some solutions are pure periodic finite-amplitude extensions of one base mode, while others are hybrid finite-amplitude superpositions of the two modes. Hybrid modes with rational frequency ratios are periodic and come in families defined by their frequency ratios. We further characterize hybrid periodic modes by identifying two symmetry classes that describe their relative phases. We see continuous transitions between one finite-amplitude base mode and the other, with one mode gradually transforming into the other. We also calculate frequency spectra of nonperiodic modes, show that the two base modes have well-defined frequencies even for nonperiodic states, and show that periodic solutions can give clues about the behavior of nearby nonperiodic solutions. In the limit of small amplitudes, we confirm that the computed frequencies of these modes agree with small-amplitude analytical results. We also generate a Lyapunov exponent heatmap that reflects periodic and nonperiodic regions of state space.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3