Magnetic field-induced phase transition in spinor exciton-polaritons condensate

Author:

Abdalla A. S.1ORCID,Alameen Suliman1ORCID,Ayuel K.2,Sheraz Khan Muhammad3ORCID,Adam Hajer4,Fadol Elsadig O.1

Affiliation:

1. Department of Physics, Faculty of Science, University of Kordofan 1 , Elobeid 51111, Sudan

2. Department of Physics, Faculty of Science, Al-Baha University 2 , Al-Baha 1988, Kingdom of Saudi Arabia

3. School of Physical Science and Technology, Guangxi University 3 , Nanning, 530004, China

4. Department of Physics, College of Science, Jazan University 4 , Jazan 45142, Kingdom of Saudi Arabia

Abstract

We theoretically study the magnetic phase transition of condensed exciton-polariton microcavities in an applied magnetic field. When the magnetic field is strong, all polariton spins are polarized parallel to the magnetic field as usual. On the contrary, in the weak magnetic-field region, the polariton polarization degree is negative, namely, anti-parallel to the magnetic field. For a strong magnetic field, the magnetic phase of the polaritons arises and leads to a paramagnetic, while around a weak magnetic field, with zero exciton–photon detunings, and weak Rabi splitting the spin polarization of the polaritons leads to a diamagnetic. Thus, magneto-polariton phase transition polarization originates from the competition between the polariton Zeeman effect and polariton–polariton interactions. Moreover, the polariton polarization strongly depends on the exciton–photon detuning and Rabi splitting and has a large negative value as they are both small. At last, we compare our theoretical results with the experiments and find they match each other very well.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3