Effect of the counterion size on microphase separation in charged-neutral diblock copolymers

Author:

Gavrilov Alexey A.12ORCID

Affiliation:

1. Faculty of Physics, Lomonosov Moscow State University , 119991 Moscow, Russia and , 119991 Moscow, Russia

2. A.N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences (INEOS RAS) , 119991 Moscow, Russia and , 119991 Moscow, Russia

Abstract

In this work, the question of the influence of the counterion size on the self-assembly in melts of diblock copolymers with one charged block was studied using coarse-grained molecular dynamics simulations. It was assumed that the blocks were fully compatible, i.e., the Flory–Huggins parameter χ between them was equal to 0. Due to the presence of correlation attraction (electrostatic cohesion) between the charged species, the systems with all types of counterions underwent transitions to ordered states, forming various morphologies, including lamellae, perforated lamellae, and hexagonally packed cylinders. Phase diagrams were constructed by varying the chain composition fc and locating the order–disorder transition positions in terms of the electrostatic strength parameter λ (dimensionless Bjerrum length). Despite having a rather large ion size mismatch, the systems with smaller counterions demonstrated an even better tendency to form microphase separated states than the systems with larger ones. It was found that the differences between the phase diagrams of the systems with different counterions can be roughly rationalized by using coordinates (volume fraction of the charged block φc—modified interaction parameter λ*). The latter parameter assumes that the electrostatic energy is simply inversely proportional to the characteristic distance between the ions of different signs. Such an approach appeared to be rather effective and allowed the diagrams obtained for different counterion sizes to almost coincide. The results of this work suggest that the counterion size can be used as a tool to control the system morphology as well as the effective incompatibility between the blocks.

Funder

Russian Science Foundation

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3