Imaging in reflecting spheres

Author:

Eckmann Jean-Pierre1ORCID,Gunaratne Gemunu H.2ORCID,Shulman Jason23ORCID,Wood Lowell T.2

Affiliation:

1. Département de Physique Théorique and Section de Mathématiques, Université de Genève, 1211 Geneva 4, Switzerland

2. Department of Physics, University of Houston, Houston, Texas 77204, USA

3. Department of Physics, Stockton University, Galloway, New Jersey 08205, USA

Abstract

We study the formation of images in a reflective sphere in three configurations using caustics on the field of light rays. The optical wavefront emerging from a source point reaching a subject following passage through the optical system is, in general, a Gaussian surface with partial focus along the two principal directions of the Gaussian surface; i.e., there are two images of the source point, each with partial focus. As the source point moves, the images move on two surfaces, referred to as viewable surfaces. In our systems, one viewable surface consists of points with radial focus and the other consists of points with azimuthal focus. The problems we study are (1) imaging of a parallel beam of light, (2) imaging of the infinite viewed from a location outside the sphere, and (3) imaging of a planar object viewed through the point of its intersection with the radial line normal to the plane. We verify the existence of two images experimentally and show that the distance between them agrees with the computations.

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An introduction to the unpublished book “Reflections on a Tube” by Mitchell J. Feigenbaum;Chaos: An Interdisciplinary Journal of Nonlinear Science;2023-08-01

2. Image formation from a concave mirror;Journal of the Optical Society of America A;2023-07-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3