Stable and broadband photodetectors based on 3D/2D perovskite heterostructures with surface passivation

Author:

Zha Yanfang1,Wang Yun1,Sheng Yuhang1,Zhang Xiaowei23ORCID,Shen Xinyue4,Xing Fangjian1,Liu Cihui1ORCID,Di Yunsong1,Cheng Yingchun35ORCID,Gan Zhixing13ORCID

Affiliation:

1. Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, People's Republic of China

2. Department of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, People's Republic of China

3. National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, People's Republic of China

4. College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, People's Republic of China

5. Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, People's Republic of China

Abstract

Despite increasing research interest in two-dimensional (2D) perovskites, the stability and spectral response range of the photodetectors based on 2D perovskites are yet far from satisfactory. In this work, a semiconductor heterojunction is constructed based on dimethyl itaconate (DI) treated (BA)2PbI4 microplates and CsPb(Brx/I1−x)3 nanocrystals. The DI treatment not only passivates the defects but also blocks the moisture, resulting in improved stability and suppressed defect trapping. Meanwhile, the type-II heterojunctions facilitate the separation of electron–hole pairs. As a result, the photodetector based on the DI-(BA)2PbI4/CsPb(Brx/I1−x)3 exhibits a responsivity up to 209 nA/mW and a detectivity up to 5.9 × 108 Jones with a broad spectral response range of 400–600 nm. Furthermore, after storage in the ambient environment for 10 days, the responsivity retains about 70%, which is significantly ameliorated compared to the photodetector based on bare (BA)2PbI4 (drops more than 90%). Therefore, this work demonstrates that surface passivation and 2D/three-dimensional heterojunctions are promising strategies to improve responsivity, broaden spectral response range, and enhance stability of photodetectors based on 2D perovskites.

Funder

Natural Science Foundation of Shandong Province

Taishan Scholar Project of Shandong Province

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3