Application of the Slater criteria to localize invariant tori in Hamiltonian mappings

Author:

Huggler Yoná H.1ORCID,Hermes Joelson D. V.12ORCID,Leonel Edson D.1ORCID

Affiliation:

1. Department of Physics, São Paulo State University—UNESP, Av. 24A, 1515 Bela Vista, 13506-900 Rio Claro, SP, Brazil

2. Federal Institute of Education, Science and Technology of South of Minas Gerais—IFSULDEMINAS, Praça Tiradentes 416 - Centro - Inconfidentes, 37576-000 Inconfidentes, MG, Brazil

Abstract

We investigate the localization of invariant spanning curves for a family of two-dimensional area-preserving mappings described by the dynamical variables [Formula: see text] and [Formula: see text] by using Slater’s criterion. The Slater theorem says there are three different return times for an irrational translation over a circle in a given interval. The returning time, which measures the number of iterations a map needs to return to a given periodic or quasi periodic region, has three responses along an invariant spanning curve. They are related to a continued fraction expansion used in the translation and obey the Fibonacci sequence. The rotation numbers for such curves are related to a noble number, leading to a devil’s staircase structure. The behavior of the rotation number as a function of invariant spanning curves located by Slater’s criterion resulted in an expression of a power law in which the absolute value of the exponent is equal to the control parameter [Formula: see text] that controls the speed of the divergence of [Formula: see text] in the limit the action [Formula: see text] is sufficiently small.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação de Amparo à Pesquisa do Estado de São Paulo

Federal Institute of Education, Science and Technology of South of Minas Gerais

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Characterization of a spring pendulum phase-space trajectories;Chaos: An Interdisciplinary Journal of Nonlinear Science;2024-02-01

2. Constructed complex motions and chaos;Chaos: An Interdisciplinary Journal of Nonlinear Science;2023-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3