Development and performance of a gelatin-based bio-polysaccharide drag reduction coating

Author:

Xie LuoORCID,Jiang LangORCID,Meng Fan-Zhe,Li QiangORCID,Wen JunORCID,Hu Hai-BaoORCID

Abstract

The secreting drag reduction mucus in fish epiderm inspires the manufacturing of five gelatin–polysaccharide drag reduction coatings. First, a mixed solution composed of the gelatin and bio-polysaccharides [guar gum, xanthan gum, locust bean gum, tragacanth gum, or acacia gum] was poured into rectangular grooved polymethyl methacrylate (PMMA) plates, and bionic coatings were obtained after curing. Then, the surface characteristics of the coatings were characterized, and the internal micro-/nanoscale three dimensional (3D) net structures provided releasing access for the polysaccharide molecules. Importantly, a parametric study focusing on the gelatin and polysaccharide proportion affected the drag reduction of the coatings in a turbulent channel flow. Based on a smooth PMMA plate without a coating as a reference, the five developed coatings exhibited considerable drag-reducing effects with the corresponding maximum drag reduction rates that all exceeded 20%. There are three drag reduction mechanisms (polymer drag reduction, slip phenomenon, and wall flexibility) and one drag increase mechanism (surface roughness). Increasing the gelatin proportion affects the release rate of the drag-reducing agents, surface flexibility, and surface slip properties. Meanwhile, increasing the polysaccharide proportion promotes the release of polysaccharides, but increases the surface roughness. Thus, the effects of gelatin and polysaccharide are complicated due to competition between these mechanisms. Future works should focus on clarifying the complex mechanisms to improve the drag reduction efficiency of the gelatin-based bio-polysaccharide coatings. These biomimetic drag-reducing coatings could be further applied to underwater equipment.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Chongqing

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Reference32 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3