Wall heat transfer in high-enthalpy hypersonic turbulent boundary layers

Author:

Li JunYang1ORCID,Yu Ming1ORCID,Sun Dong1ORCID,Liu PengXin1ORCID,Yuan XianXu1ORCID

Affiliation:

1. State Key Laboratory of Aerodynamics, Mianyang 621000, China

Abstract

In this paper, we investigate the differences in wall heat transfer between the low- and high-enthalpy turbulent boundary layers by exploiting direct numerical simulation databases of hypersonic turbulent boundary layers at the free-stream Mach number of 4.5 and the friction Reynolds number of 800. For that purpose, we refine the integral formula of decomposing the wall heat flux proposed by Sun et al. [“A decomposition formula for the wall heat flux of a compressible boundary layer,” Adv. Aerodyn. 4, 1–13 (2022)], enabling us to scrutinize the contribution of different physical processes. Statistical results show that the mean wall heat transfer is primarily contributed by the heat conduction, the turbulent heat transfer, viscous dissipation of mean kinetic energy, and turbulent kinetic energy production. Among these processes, the contribution of the turbulent heat flux in the high-enthalpy case is 10% higher than that in the low-enthalpy case. Such discrepancy is caused by the turbulent–chemistry interaction consisting of velocity and species mass fraction fluctuations. Coherent structures in the conditionally averaged fields related to this process reveal that the sweep in the viscous sublayer and ejection in the logarithmic layer bringing the hot fluid downward and upward, respectively, significantly alter the distribution of the species mass fraction. The wall heat flux fluctuations are slightly enhanced in the high-enthalpy flows, which is ascribed to be the intensification of traveling wave packets.

Funder

National Key Research and Development Program of China

National Numerical Wind Tunnel Project of China

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Reference48 articles.

1. A decomposition formula for the wall heat flux of a compressible boundary layer

2. The relentless pursuit of hypersonic flight

3. J. Urzay and M. Di Renzo , “ Engineering aspects of hypersonic turbulent flows at suborbital enthalpies,” Technical Report No. 2 (2020).

4. Hypersonic and High-Temperature Gas Dynamics, Second Edition

5. Numerical Methods for High-Speed Flows

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3