Explosions of nanodroplets studied with molecular dynamics simulations

Author:

Schaefer Dominik1ORCID,Kunstmann Babette1ORCID,Schmitt Sebastian1ORCID,Hasse Hans1,Kohns Maximilian1ORCID

Affiliation:

1. Laboratory of Engineering Thermodynamics (LTD), RPTU Kaiserslautern , 67663 Kaiserslautern, Germany

Abstract

Explosions of droplets that are caused by superheating of the liquid phase occur in many combustion processes but are difficult to investigate experimentally. We have studied this process for nanodroplets using non-equilibrium molecular dynamics simulations. Starting from an equilibrium state in which a spherical droplet is surrounded by a vapor phase, a local thermostat is used to impose a high temperature in a small control volume in the droplet center and the following process is studied for varying set temperatures. The fluid is modeled using the Lennard–Jones truncated and shifted potential. Depending on the set temperature, three different system responses were observed: (i) Low set temperatures lead to a shrinking of the droplet due to evaporation that follows the well-known d2 law. (ii) At intermediate set temperatures, a vapor bubble emerges in the droplet center and the liquid phase is formed into spherical shell that expands as the bubble inside of it grows. However, that spherical shell is only temporarily stable and eventually breaks apart. (iii) For high set temperatures, the abrupt and violent formation of the vapor bubble leads to an immediate breakup of the droplet. For case (ii), unexpected phenomena were observed. Oscillations in the diameter of the vapor bubble surrounded by the liquid film occurred. In some simulations, small holes formed temporarily in the liquid shell during its expansion, which closed again over the course of the simulation. Moreover, for one specific set temperature, a transition of the spherical droplet shell into a torus-like object was observed.

Funder

Deutsche Forschungsgemeinschaft

German Research Foundation

Regional University Computing Center Kaiserslautern

Leibniz Supercomputing Centre

High Performance Computing Center Stuttgart

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3