On the frequency bifurcations of the MHD startup modes in NSTX

Author:

Munaretto S.1ORCID,Ferraro N. M.1ORCID,Fredrickson E. D.1ORCID

Affiliation:

1. Princeton Plasma Physics Laboratory , Princeton, New Jersey 08540, USA

Abstract

The observed bifurcations of the low frequency (<50 kHz) and low toroidal periodicity (n < 5) magnetohydrodynamic (MHD) activity often present in the initial part of the National Spherical Tokamak Experiment (NSTX) discharges can be explained by the evolution of the radial profile of the safety factor (q=rBϕ/RBθ) crossing multiple rational surfaces in the core. Important performance limiting instability mechanisms in the NSTX spherical tokamak are often linked to low frequency and low-n MHD activity. They are quite common in long-pulse NSTX plasmas. They can be present at the beginning of the plasma current flat-top, at the end of the discharge or during the whole duration, and they have been observed to deleteriously impact performance over a wide range of q95. An interesting feature observed in some NSTX discharges is the presence of a bifurcation in the frequency of the low n modes, as low as n = 1, that have frequencies comparable to the plasma core rotation divided by n. Equilibrium reconstructions constrained by magnetic diagnostics data and motional stark effect pitch angle radial profiles suggest that the observed bifurcations are linked to a fast evolving minimum value of q. 3D non-linear resistive MHD simulations show that these modes are ideal and exist as non-resonant before the correspondent rational surface enters the plasma.

Funder

Office of Science

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3