Symmetry breaking induced bandgap opening in epitaxial germanene on WSe2

Author:

Wu Qilong1ORCID,Bagheri Tagani Meysam2ORCID,Tian Qiwei1,Izadi Vishkayi Sahar3ORCID,Zhang Li1,Yin Long-Jing1ORCID,Tian Yuan1,Zhang Lijie1ORCID,Qin Zhihui1ORCID

Affiliation:

1. Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China

2. Department of Physics, University of Guilan, P.O. Box 41335-1914, Rasht, Iran

3. School of Physics, Institute for Research in Fundamental Sciences (IPM), P. O. Box 19395-5531, Tehran, Iran

Abstract

Germanene has attracted much attention because the material was predicted to host Dirac fermions. However, the synthesis of germanene is still in its infancy; moreover, the predicted tiny bandgap induced by the spin–orbit coupling is far from practical applications for nanoelectronic devices. Herein, quasi-freestanding germanene with linear dispersion relation of the band structure is well grown on a WSe2/Au(100) substrate. Band structure calculations reveal that the interaction of germanene with the substrate destroys the sublattice symmetry. The energy-dependent contribution of σ orbitals responsible for band crossing at the Fermi level around the Γ point induces asymmetric density of states at the Dirac point. Upon annealing in ultra-high vacuum, we observe a bandgap opening in germanene of about ∼0.17 eV, which is attributed to a sublattice symmetry breaking in germanene and the emergence of a net electric field. This work provides an effective method to tune or tailor the electronic properties of germanene, paving the way to germanene-based field-effect applications.

Funder

National Natural Science Foundation of China

the Strategic Priority research program of Chinese academy of science

Natural Science Foundation of Hunan Province

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3