Numerical analysis of ultrasound-mediated microbubble interactions in vascular systems: Effects on shear stress and vessel mechanics

Author:

Heidary Zeinab12ORCID,Ohl Claus-Dieter2ORCID,Mojra Afsaneh1ORCID

Affiliation:

1. Department of Mechanical Engineering, K. N. Toosi University of Technology 1 , Tehran, Iran

2. Institute for Physics, Otto von Guericke University, Universitätsplatz 2 , Magdeburg 39106, Germany

Abstract

The present study concerns the numerical modeling of microbubble oscillation within an elastic microvessel, aiming to enhance the safety and efficacy of ultrasound-mediated drug delivery and diagnostic imaging. The success of such applications depends on a thorough understanding of microbubble–vessel interactions. Despite some progress, the critical impact of the stabilizing shell around gas core has remained underexplored. To address this, we developed a novel numerical approach that models the stabilizing shell. Additionally, there is novelty in modeling consequent vascular deformation in response to complicated spatiotemporal microbubble oscillations. The novel approach was implemented for shear stress evaluation as a critical factor in vascular permeability. Finally, our unique approach offered novel insights into microbubble–vessel interactions under diverse acoustic conditions. Results indicated substantial impact of shell properties and acoustic parameters on induced shear stress. With a fourfold increase in acoustic pressure amplitude, 15.6-fold and sixfold increases were observed in maximum shear stress at 1 and 3 MHz, respectively. Also, the peak shear stress could reach up to 15.6 kPa for a shell elasticity of 0.2 N/m at 2.5 MHz. Furthermore, decreasing microvessel/bubble size ratio from 3 to 1.5 increased maximum shear stress from 5.1 to 24.3 kPa. These findings are crucial for optimizing ultrasound parameters in clinical applications, potentially improving treatment outcomes while minimizing risk of vessel damage. However, while our model demonstrated high fidelity in reproducing experimental observations, it is limited by assumptions of vessel geometry and homogeneity of vessel properties. Future work can improve our findings through in vitro experimental measurements.

Funder

Deutscher Akademischer Austauschdienst

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3