Research on a rotary piezoelectric wind energy harvester with bilateral excitation

Author:

He Lipeng1ORCID,Zheng Xiaotian1ORCID,Li Wei2ORCID,Gu Xiangfeng1ORCID,Han Yuhang1,Cheng Guangming3

Affiliation:

1. School of Mechatronic Engineering, Changchun University of Technology 1 , Changchun, Jilin 130012, China

2. College of Intelligent Manufacturing, Guangdong Technology College 2 , Zhaoqing, Guangdong 526100, China

3. Institute of Precision Machinery and Smart Structure, Zhejiang Normal University 3 , Jinhua, Zhejiang 321004, China

Abstract

This paper describes a rotary piezoelectric wind energy harvester with bilateral excitation (B-RPWEH) that improves power generation performance. The power generating unit in the current piezoelectric cantilever wind energy harvester was primarily subjected to a periodic force in a single direction. The B-RPWEH adopted a reasonable bilateral magnet arrangement, thus avoiding the drawbacks of limited piezoelectric cantilever beam deformation and unstable power generation due to unidirectional excitation force. The factors affecting the power generation were theoretically analyzed, and the natural frequency and excitation force of the piezoelectric cantilever have been simulated and analyzed. A comprehensive experimental research method was used to investigate the output performance. The B-RPWEH reaches a maximum output voltage of 20.48 Vpp when the piezoelectric sheet is fixed at an angle of 30°, the Savonius turbine number is 3, and the magnet diameter is 8 mm. By adjusting the fixed angle of the piezoelectric sheet, the number of Savonius wind turbine blades, and the magnet diameter, the maximum voltage is increased by 52.38%, 4.49%, and 245.95%, respectively. The output power is 24.5 mW with an external resistor of 8 kΩ, and the normalized power density is 153.14 × 10−3 mW/mm3, capable of powering light-emitting diodes (LEDs). This structure can drive wireless networks or low-power electronics.

Funder

Education Department of Jilin Province

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3