Magnetic octupole domain evolution and domain-wall structure in the noncollinear Weyl antiferromagnet Mn3Ge

Author:

Wu Mingxing12ORCID,Kondou Kouta23ORCID,Nakatani Yoshinobu4ORCID,Chen Taishi15,Isshiki Hironari1,Higo Tomoya135ORCID,Nakatsuji Satoru1356,Otani Yoshichika1236ORCID

Affiliation:

1. The Institute for Solid State Physics, The University of Tokyo 1 , Kashiwa, Chiba 277-8581, Japan

2. Center for Emergent Matter Science, RIKEN 2 , 2-1 Hirosawa, Wako 351-0198, Japan

3. CREST, Japan Science and Technology Agency (JST) 3 , 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan

4. Department of Computer Science, University of Electro-Communications 4 , 1-5-1 Chofugaoka, Chofu-Shi, Tokyo 182-8585, Japan

5. Department of Physics, University of Tokyo 5 , Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

6. Trans-scale Quantum Science Institute, University of Tokyo 6 , Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

Abstract

Antiferromagnets with the intrinsic advantages of terahertz spin dynamics and negligible stray fields have been extensively studied for spintronic applications. In particular, spintronic research on antiferromagnets has expanded its focus from collinear to noncollinear Weyl antiferromagnets and discovered that Mn3X (X = Sn, Ge) produces substantial magneto-electric responses. Therefore, noncollinear antiferromagnets could be an ideal spintronic platform. Exploring the domain-wall features in Mn3X is, on the other hand, essential for spintronic device engineering. Here, we report an in-depth study on magnetic octupole domain evolution and domain-wall structure with a choice of Mn3Ge single crystal. Our magneto-optical imaging and the anomalous Hall measurements elucidate the nontrivial magnetic octupole domain nucleation, domain-wall propagation, and pinning behaviors. Moreover, combining the micromagnetic simulation, we reveal that Bloch- and Néel-like walls coexist in bulk with comparable sizes and energy densities. Our findings promote understanding the magnetic octupole domain-wall physics and designing domain-wall-based spintronic devices.

Funder

Core Research for Evolutional Science and Technology

JST-Mirai Program

Ministry of Education, Culture, Sports, Science and Technology

Japan Society for the Promotion of Science

Publisher

AIP Publishing

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3