Percolation critical exponents in cluster kinetics of pulse-coupled oscillators

Author:

Gwon Gangyong1ORCID,Cho Young Sul12ORCID

Affiliation:

1. Department of Physics, Jeonbuk National University 1 , Jeonju 54896, Republic of Korea

2. Research Institute of Physics and Chemistry, Jeonbuk National University 2 , Jeonju 54896, Republic of Korea

Abstract

Transient dynamics leading to the synchrony of a type of pulse-coupled oscillators, so-called scrambler oscillators, has previously been studied as an aggregation process of synchronous clusters, and a rate equation for the cluster size distribution has been proposed. However, the evolution of the cluster size distribution for general cluster sizes has not been fully understood yet. In this paper, we study the evolution of the cluster size distribution from the perspective of a percolation model by regarding the number of aggregations as the number of attached bonds. Specifically, we derive the scaling form of the cluster size distribution with specific values of the critical exponents using the property that the characteristic cluster size diverges as the percolation threshold is approached from below. Through simulation, it is confirmed that the scaling form well explains the evolution of the cluster size distribution. Based on the distribution behavior, we find that a giant cluster of all oscillators is formed discontinuously at the threshold and also that further aggregation does not occur like in a one-dimensional bond percolation model. Finally, we discuss the origin of the discontinuous formation of the giant cluster from the perspective of global suppression in explosive percolation models. For this, we approximate the aggregation process as a cluster–cluster aggregation with a given collision kernel. We believe that the theoretical approach presented in this paper can be used to understand the transient dynamics of a broad range of synchronizations.

Funder

National Research Foundation of Korea

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3