Decoupling activation volume via dynamic electron transfer in stress-driven chemical reactions

Author:

Jiang Yilong1,Sun Junhui123ORCID,Lu Yangyang1,Chen Lei1ORCID,Jiang Liang1ORCID,Du Shiyu34ORCID,Qian Linmao1ORCID

Affiliation:

1. School of Mechanical Engineering, State Key Laboratory of Traction Power, Southwest Jiaotong University 1 , Chengdu 610031, China

2. State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences 2 , Lanzhou 730000, China

3. Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences 3 , Ningbo 315201, China

4. School of Materials Science and Engineering, China University of Petroleum (East China) 4 , Qingdao 266580, China

Abstract

The activation volume, which quantifies the response of the chemical reactions to the applied stress, plays a central role in controlling the mechanochemical reactions for applications including lubricity, wear, and the topographic fabrication of the surfaces under stress. However, the physical interpretations of the activation volume remain scientifically intriguing and largely unexplored. Here, density functional theory calculations are used to investigate the general rules of charge transfer underlying activation volume in controlling the typically mechanochemical reaction process. It is found that the activation volume could be decoupled into the electronic contributions from interface chemistry and bulk physical deformation, which are commonly linear dependent on the contact pressure. Therefore, the activation volume may, indeed, be derived from the stress-driven charge transfer underlying cooperative competition between interfacial chemistry and the bulk region. This competition is related to the stiffness change from the bulk to slab. The magnitude of the stiffness change represents the degree to which the interface atoms modify the bulk properties, which is directly related to the contribution of different regions to the activation volume. This work may open up the understanding of the activation volume from dynamic electron transfer to engineer mechanochemical reactions, different from the existing insights into the geometric dimensionality of the contact configuration.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3