Phase noise analysis of mutually synchronized spin Hall nano-oscillators

Author:

Litvinenko Artem1ORCID,Kumar Akash123ORCID,Rajabali Mona4ORCID,Awad Ahmad A.123ORCID,Khymyn Roman1ORCID,Åkerman Johan123ORCID

Affiliation:

1. Applied Spintronics Group, Department of Physics, University of Gothenburg 1 , 412 96 Gothenburg, Sweden

2. Center for Science and Innovation in Spintronics, Tohoku University 2 , 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan

3. Research Institute of Electrical Communication, Tohoku University 3 , 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan

4. NanOsc AB 4 , Kista, Sweden

Abstract

The reduction in phase noise in electronic systems is of utmost importance in modern communication and signal processing applications and requires an understanding of the underlying physical processes. Here, we systematically study the phase noise in mutually synchronized chains of nano-constriction spin Hall nano-oscillators (SHNOs). We find that longer chains have improved phase noise figures at low offset frequencies (1/f noise), where chains of two and ten mutually synchronized SHNOs have 2.8 and 6.2 dB lower phase noise than single SHNOs. This is close to the theoretical values of 3 and 10 dB, and the deviation is ascribed to process variations between nano-constrictions. However, at higher offset frequencies (thermal noise), the phase noise unexpectedly increases with chain length, which we ascribe to process variations, a higher operating temperature in the long chains at the same drive current and phase delays in the coupling between nano-constrictions.

Funder

HORIZON EUROPE European Research Council

Vetenskapsrådet

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spintronic devices as next-generation computation accelerators;Current Opinion in Solid State and Materials Science;2024-08

2. Spin Hall Nano-Oscillator Empirical Electrical Model for Optimal On-Chip Detector Design;IEEE Transactions on Electron Devices;2024-08

3. Electronic noise—From advanced materials to quantum technologies;Applied Physics Letters;2024-01-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3