Exploring the water capture efficiency of covalently attached liquid-like surfaces

Author:

Katselas Anthony1ORCID,Gresham Isaac J.1ORCID,Nelson Andrew R. J.2ORCID,Neto Chiara1ORCID

Affiliation:

1. School of Chemistry and The University of Sydney Nano Institute, The University of Sydney 1 , Sydney, NSW 2006, Australia

2. ANSTO 2 , Locked Bag 2001, Kirrawee DC, NSW 2232, Australia

Abstract

The capture of moisture from the atmosphere through condensation has the potential to provide a sustainable source of water. Here, we investigate the condensation of humid air at low subcooling condition (11 °C), similar to conditions for natural dew capture, and explore how water contact angle and contact angle hysteresis affect the rates of water capture. We compare water collection on three families of surfaces: (i) hydrophilic (polyethylene oxide, MPEO) and hydrophobic (polydimethylsiloxane, PDMS) molecularly thin coatings grafted on smooth silicon wafers, which produce slippery covalently attached liquid surfaces (SCALSs), with low contact angle hysteresis (CAH = 6°); (ii) the same coatings grafted on rougher glass, with high CAH (20°–25°); (iii) hydrophilic polymer surfaces [poly(N-vinylpyrrolidone), PNVP] with high CAH (30°). Upon exposure to water, the MPEO SCALS swell, which likely further increases their droplet shedding ability. MPEO and PDMS coatings collect similar volume of water (around 5 l m−2 day−1), both when they are SCALS and non-slippery. Both MPEO and PDMS layers collect about 20% more water than PNVP surfaces. We present a basic model showing that, under low heat flux conditions, on all MPEO and PDMS layers, the droplets are so small (600–2000 µm) that there is no/low heat conduction resistance across the droplets, irrespective of the exact value of contact angle and CAH. As the time to first droplet departure is much faster on MPEO SCALS (28 min) than on PDMS SCALS (90 min), slippery hydrophilic surfaces are preferable in dew collection applications where the collection time frame is limited.

Funder

Australian Research Council

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3