Design and development of mechanical test bench for testing and calibration of multiple blood pressure measuring devices

Author:

Kumar Rahul12ORCID,Zafer Afaqul12,Dubey P. K.12,Kumar Ashok12ORCID,Singh Megha1ORCID,Sharma Nita Dilawar12ORCID,Jaiswal S. K.12ORCID,Prakash Om1,Kumar Harish1,Gupta V. K.1,Aggarwal Ashutosh3ORCID,Yadav Sanjay12ORCID

Affiliation:

1. CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg 1 , New Delhi 110012, India

2. Academy of Scientific and Innovative Research (AcSIR) 2 , Ghaziabad 201002, India

3. Regional Reference Standard Laboratory 3 , Ahmedabad 382445, India

Abstract

Blood pressure (BP) measurement is an important physiological parameter for human health monitoring, which plays a significant role in the diagnosis of many incurable diseases. However, due to inaccuracies in the different types of BP measuring devices, the calibration of these BP measuring instruments is a major concern for a medical practitioner. Currently, these devices’ calibration, testing, and validation are performed using rigorous methods with complex clinical trials and following the available documentary standards. This article describes the design and development of an indigenous mechanical test bench (MTB) system for the testing and calibration of multiple BP devices, as per International Organization of Legal Metrology (OIML) recommended documents e.g., OIML R 16-1 and OIML R 16-2. The developed system can test and calibrate 20 BP devices, simultaneously. The traceability of the developed MTB is established by performing its calibration against the Air Piston Gauge, a national primary vacuum standard. The estimated expanded measurement uncertainty evaluated is found to be ±0.11 mmHg, which is almost one order better than the measurement uncertainty required for the test and calibration of BP measuring instruments as per standard. The MTB has successfully been used to test and calibrate several BP measuring instruments. The data of one such device is reported herein as an indicator of the performance process. The calibration of these BP measuring instruments was performed in the static mode, and the estimated expanded measurement uncertainty was found to be ±1.25 mmHg. The developed MTB system would prove to be an excellent instrument for calibration laboratories, hospitals, regulatory agencies, and other users to test and calibrate 20 BP measuring devices simultaneously and cost-effectively.

Publisher

AIP Publishing

Subject

Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design, Development, and Analysis of Ultrasonic Fall Rate Measuring System for Primary Pressure Standard;Journal of The Institution of Engineers (India): Series C;2024-01-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3