Exploring the impact of fabrication parameters in organic solar cells with PM6:Y6 using machine learning

Author:

Zhao Xiaojie1ORCID,Lei Min12ORCID,Wang Kuo13ORCID,Peng Xinyu4ORCID,Li Zhennan1ORCID,Zhou Haixin1ORCID,Peng Zhiyan1ORCID,Chen Ziye1ORCID,Deng Jiahao1ORCID,Zhang Kang1ORCID,Huang Di1ORCID,Liang Jiaojiao1ORCID

Affiliation:

1. College of Railway Transportation, Hunan University of Technology 1 , Zhuzhou 412008, China

2. College of Packaging and Material Engineering, Hunan University of Technology 2 , Zhuzhou 412008, China

3. Department of Physics, Gyeongsang National University 3 , Jinju, South Gyeongsang Province 52828, Republic of Korea

4. College of Electrical and Information Engineering, Hunan University of Technology 4 , Zhuzhou 412008, China

Abstract

The preparation parameters of PM6:Y6 non-fullerene organic solar cells (OSCs) have significant influence on the power conversion efficiency (PCE). Herein, machine learning (ML) models are applied for analyzing the quantitative effects of the PCE on PM6:Y6 non-fullerene OSCs from the perspective of fabrication parameters. Random Forest (RF) model has the best evaluation performance and is considered as the best model among the six different algorithms. The Pearson correlation coefficient, coefficient of determination, root mean square error, mean absolute error, and mean absolute percentage error of the test set in the RF model are 0.836, 0.668, 0.695, 0.538, and 0.035, respectively. In addition, the most important preparation parameters for PCE are the effective area of OSCs, type of solvent and solvent additives, spin-coating speed, total concentration, annealing temperature, annealing time from SHAP analysis. The optimized PCE can be obtained in PM6:Y6 non-fullerene OSCs when the effective area is between 4 and 6 mm2, the spin-coating speed is 3000 rpm, and the total concentration is 18 mg ml−1, respectively. The contour map further reflects that the optimal annealing temperature are 80 or 105 °C, and the corresponding annealing time are 5 or 9 min, respectively. Based on the above preparation conditions, we verified through the experimental design that the optimal PCE is 16.91%, and the relative error with the ML prediction is only 1.24%. Our research provides low time and cost guidance on preparation parameter matching for the development of high-performance the PM6:Y6 non-fullerene OSCs.

Funder

Education Department of Hunan Province

Qinghai Provincial Laboratory of Nanomaterials and Nanotechnology

The Nature Science Foundation of Hunan Province

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3