Assessment of three-body dispersion models against coupled-cluster benchmarks for crystalline benzene, carbon dioxide, and triazine

Author:

Xie Yi1ORCID,Glick Zachary L.1ORCID,Sherrill C. David1ORCID

Affiliation:

1. Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332-0400, USA

Abstract

To study the contribution of three-body dispersion to crystal lattice energies, we compute the three-body contributions to the lattice energies for crystalline benzene, carbon dioxide, and triazine using various computational methods. We show that these contributions converge quickly as the intermolecular distances between the monomers grow. In particular, the smallest value among the three pairwise intermonomer closest-contact distances, Rmin, shows a strong correlation with the three-body contribution to the lattice energy, and, here, the largest of the closest-contact distances, Rmax, serves as a cutoff criterion to limit the number of trimers to be considered. We considered all trimers up to Rmax=15Å. The trimers with Rmin<4Å contribute 90.4%, 90.6%, and 93.9% of the total three-body contributions for crystalline benzene, carbon dioxide, and triazine, respectively, for the coupled-cluster singles, doubles, and perturbative triples [CCSD(T)] method. For trimers with Rmin>4Å, the second-order Møller–Plesset perturbation theory (MP2) supplemented with the Axilrod–Teller–Muto (ATM) three-body dispersion correction reproduces the CCSD(T) values for the cumulative three-body contributions with errors of less than 0.1 kJ mol−1. Moreover, three-body contributions are converged within 0.15 kJ mol−1 by Rmax=10Å. From these results, it appears that in molecular crystals where dispersion dominates the three-body contribution to the lattice energy, the trimers with Rmin>4Å can be computed with the MP2+ATM method to reduce the computational cost, and those with Rmax>10Å appear to be basically negligible.

Funder

National Science Foundation

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3