Ultrafast activation of the double-exchange interaction in antiferromagnetic manganites

Author:

Hortensius J. R.1ORCID,Afanasiev D.2ORCID,Vistoli L.3ORCID,Matthiesen M.1ORCID,Bibes M.3ORCID,Caviglia A. D.4ORCID

Affiliation:

1. Kavli Institute of Nanoscience, Delft University of Technology 1 , P.O. Box 5046, 2600 GA Delft, Netherlands

2. Radboud University, Institute for Molecules and Materials 2 , 6525 AJ Nijmegen, Netherlands

3. Unité Mixte de Physique, CNRS, Thales, Université Paris-Sud, Université Paris-Saclay 3 , Palaiseau, France

4. Department of Quantum Matter Physics, University of Geneva 4 , 24, Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland

Abstract

In doped manganite systems, strong electronic correlations result in rich phase diagrams where electron delocalization strongly affects the magnetic order. Here, we employ a femtosecond all-optical pump-probe scheme to impulsively photodope the antiferromagnetic parent manganite system CaMnO3 and unveil the formation dynamics of a long-range ferromagnetic state. We resonantly target intense charge transfer electronic transitions in CaMnO3 to photodope the system and probe the subsequent dynamics of both charges and spins using a unique combination of time-resolved terahertz spectroscopy and time-resolved magneto-optical Faraday measurements. We demonstrate that photodoping promotes a long-lived population of delocalized electrons and induces a net magnetization, effectively promoting ferromagnetism resulting from light-induced carrier-mediated short-range double-exchange interactions. The picosecond set time of the magnetization, much longer than the electron timescale, and the presence of an excitation threshold are consistent with the formation of ferromagnetic patches in an antiferromagnetic background.

Funder

European Research Council

Swiss State Secretariat for Education, Research and Innovation

Gordon and Betty Moore Foundation

Netherlands Organisation for Scientific Research

Publisher

AIP Publishing

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3