A model for electroencephalogram emotion recognition: Residual block-gated recurrent unit with attention mechanism

Author:

Wang Yujie1ORCID,Zhang Xiu2ORCID,Zhang Xin2ORCID,Sun Baiwei1,Xu Bingyue1

Affiliation:

1. Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, Tianjin Normal University 1 , Tianjin 300387, China

2. College of Artificial Intelligence, Tianjin Normal University 2 , Tianjin 300387, China

Abstract

Electroencephalogram (EEG) signals, serving as a tool to objectively reflect real emotional states, hold a crucial position in emotion recognition research. In recent years, deep learning approaches have been widely applied in emotion recognition research, and the results have demonstrated their effectiveness in this field. Nevertheless, the challenge remains in selecting effective features, ensuring their retention as the network depth increases, and preventing the loss of crucial information. In order to address the issues, a novel emotion recognition method is proposed, which is named Res-CRANN. In the proposed method, the raw EEG signals are transformed into four dimensional spatial-frequency-temporal information, which can provide a more enriched and complex feature representation. First, the residual block is incorporated into the convolutional layers to extract spatial and frequency domain information. Subsequently, gated recurrent unit (GRU) is employed to capture temporal information from the convolutional neural network outputs. Following GRU, attention mechanisms are applied to enhance awareness of key information and diminish interference from irrelevant details. By reducing attention to irrelevant or noisy temporal steps, it ultimately improves the accuracy and robustness of the classification process. The Res-CRANN method exhibits excellent performance on the DEAP dataset, with an accuracy of 96.63% for valence and 96.87% for arousal, confirming its effectiveness.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3