Affiliation:
1. Department of Electrical-Electronics Engineering, Abdullah Gül University, Kayseri 38100, Turkey
Abstract
The complex, highly nonlinear dynamic behavior of nuclear reactors can be captured qualitatively by novel four-dimensional (that is, fourth order) and three-dimensional (that is, third order) models of chaotic systems and analyzed with Lyapunov spectra, bifurcation diagrams, and phase diagrams. The chaotic systems exhibit a rich variety of bifurcation phenomena, including the periodic-doubling route to chaos, reverse bifurcations, anti-monotonicity, and merging chaos. The offset boosting method, which relocates the attractor’s basin of attraction in any direction, is demonstrated in these chaotic systems. Both constant parameters and periodic functions are seen in offset boosting phenomena, yielding chaotic attractors with controlled mean values and coexisting attractors.
Subject
Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献