Synthesis of Co9S8@CNT hydrogen production composites by one-step pyrolysis of monomolecule precursor

Author:

Ge Xianghong1ORCID,Zhang Xinwen2,Ding Xingxing1,Shen Ruofan2,Liu Yanyan1ORCID,Wu Xianli2,Liang Erjun2ORCID

Affiliation:

1. Zhengzhou Key Laboratory of Low-dimensional Quantum Materials and Devices, College of Science, Zhongyuan University of Technology 1 , Zhengzhou 450007, China

2. Research Center of Green Catalysis, College of Chemistry; School of Physics and Microelectronics, Zhengzhou University 2 , 100 Science Road, Zhengzhou 450001, China

Abstract

Co9S8 is a highly promising electrochemically active material for energy devices; its rational design and manufacture for further enhancing the electrochemical activity and durability are still challenging. Herein, Co9S8@CNT compounds are synthesized by one-step pyrolysis, which self-assembled the monomolecular precursor and carbon nanotubes (CNTs). The CNTs effectively improve the electrical conductivity of the materials and availability of the catalytically active sites, which means that the electrochemical ability of Co9S8@CNT is better than that of individual Co9S8 and CNTs. The onset potential of Co9S8@CNT is 132 mV, which has greatly decreased. At the mass current density of 10 mA mg−1, the overpotential is 337 mV, and the Tafel slope is 49.8 mV dec−1. The addition of CNTs makes up for the deficiency of low electrical conductivity of the CoSx. Furthermore, the three-dimensional (3D) structure of the composite improves its electrocatalytically active surface area, and the electrocatalytic ability has been improved efficiently, owing to the increased number of catalytic sites on the surface.

Funder

National Natural Science Foundation of China

Key Scientific Research Project of Colleges and Universities in Henan Province

Publisher

AIP Publishing

Subject

General Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3