Microgel-based etalon membranes: Characterization and properties

Author:

Kontaxi G.1ORCID,Wensink G.2,Sberna P. M.3,Rücker M.2ORCID,Garbin V.1ORCID,Serpe M. J.4,Bazyar H.1ORCID

Affiliation:

1. Department of Chemical Engineering, Delft University of Technology 1 , Delft, the Netherlands

2. Department of Mechanical Engineering, Eindhoven University of Technology 2 , Eindhoven, the Netherlands

3. Department of Microelectronics, Delft University of Technology 3 , Delft, the Netherlands

4. Department of Chemistry, University of Alberta 4 , Edmonton, Alberta T6G 2R3, Canada

Abstract

We introduce Microgel-based Etalon Membranes (MEMs), based on the combination of stimuli-responsive microgels with an etalon, which is an optical device consisting of two reflecting plates and is used to filter specific wavelengths of light. The microgels are sandwiched between two reflective layers and, in response to a stimulus (e.g., temperature, pH, or biomarker concentration), swell or de-swell, thereby changing the distance between the two reflective layers and generating multiple peaks in the reflectance spectra. This property gives a MEM the unique capability of simultaneous separation and tunable responses to environmental changes and/or biomarker concentrations. We propose a design based on gold layers on a silicon nitride wafer membrane. Our comprehensive characterization, employing permeability experiments, in situ optical reflectance spectroscopy, in-liquid atomic force microscopy (AFM) analysis, and captive bubble contact angle measurements, elucidates the dynamic response of MEM to pH, temperature, and glucose stimuli and the corresponding effect of microgel swelling/de-swelling on the membrane properties, e.g., permeability. The AFM results confirm the dynamic changes of the microgel layer’s thickness on the membrane surface in response to the stimuli. Although the microgel’s swelling/de-swelling influences the effective pore radius, the decrease in the membrane’s permeance is limited to less than 10%. In the swollen state of the microgels, the etalon membranes show a prominent hydrophilic behavior, while they become less hydrophilic in the microgels’ de-swollen state. This work introduces MEM and provides novel insights into their behavior. The fundamental understanding that we reveal opens the way to applications ranging from point-of-care testing to continuous environmental monitoring.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3