Influence of optical property contrast on the critical distribution of electrostatic torques in double-beam torsional Casimir actuators: Non-linear actuation toward chaotic motion

Author:

Dadi Z.1ORCID,Masoudi A. A.1ORCID,Tajik F.12ORCID,Palasantzas G.2ORCID

Affiliation:

1. Department of Condensed Matter Physics, Faculty of Physics, Alzahra University 1 , Tehran 1993891167, Iran

2. Zernike Institute for Advanced Materials, University of Groningen 2 , Nijenborgh 4, 9747 AG Groningen, The Netherlands

Abstract

Here, we discuss how to achieve the stable actuation of a double beam torsional micro-actuator over the largest possible displacement of the moving component under the influence of Casimir and electrostatic torques, when the rotating component is constructed from different materials. The main part of this study is devoted to finding the optimal distribution of the electrostatic torque between the left and right sides of the micro-actuator to reach the maximum stable operation of the device. The latter is manifested by switching from homoclinic to heteroclinic orbits in the phase portraits. Indeed, the bifurcation curves and the phase portraits have been employed to show the sensitivity of the critical distribution of the electrostatic torque, beyond which the device does show stable performance, on the contrast of the optical properties of the moving component and the applied voltage in a conservative autonomous system. Moreover, for driven systems, the Melnikov function approach and the Poincaré portraits are used to study the presence of chaotic motion, which eventually leads to stiction. It is shown that the application of the optimal distribution of the electrostatic torque can significantly decrease the possibility of chaotic motion, and at this optimal level, the threshold curves reveal less difference between systems with different optical contrast.

Funder

Zernike Institute for Advanced Materials, Rijksuniversiteit Groningen

Al Zahra University

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3