Inkjet printing on hydrophobic surfaces: Controlled pattern formation using sequential drying

Author:

Naderi Paria1ORCID,Sheuten Benjamin Raskin2ORCID,Amirfazli Alidad2ORCID,Grau Gerd1ORCID

Affiliation:

1. Department of Electrical Engineering and Computer Science, York University 1 , Toronto, Ontario M3J 1P3, Canada

2. Department of Mechanical Engineering, York University 2 , Toronto, Ontario M3J 1P3, Canada

Abstract

Inkjet-printed micro-patterns on hydrophobic surfaces have promising applications in the fabrication of microscale devices such as organic thin-film transistors. The low wettability of the surface prevents the inkjet-printed droplets from spreading, connecting to each other, and forming a pattern. Consequently, it is challenging to form micro-patterns on surfaces with low wettability. Here, we propose a sequential printing and drying method to form micro-patterns and control their shape. The first set of droplets is inkjet-printed at a certain spacing and dried. The second set of droplets is printed between these dry anchors on the surface with low wettability. As a result, a stable bridge on the surface with low wettability forms. This printing method is extended to more complicated shapes such as triangles. By implementing an energy minimization technique, a simple model was devised to predict the shape of the inkjet-printed micro-patterns while confirming that their equilibrium shape is mainly governed by surface tension forces. The gradient descent method was utilized with parametric boundaries to emulate droplet pinning and wettability of the anchors and to prevent convergence issues from occurring in the simulations. Finally, the energy minimization based simulations were used to predict the required ink to produce dry lines and triangles with smooth edges.

Funder

Natural Sciences and Engineering Research Council of Canada

ThermaSMART

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3