An integrated and scalable experimental system for nitrogen-vacancy ensemble magnetometry

Author:

Song Shupei1ORCID,Li Xining1ORCID,Zhu Xinyi1ORCID,Chen Bao1ORCID,Yu Zhifei1ORCID,Xu Nanyang2ORCID,Chen Bing1ORCID

Affiliation:

1. School of Physics, Hefei University of Technology 1 , Hefei, Anhui 230009, China

2. Research Center for Quantum Sensing, Zhejiang Lab 2 , Hangzhou 311000, China

Abstract

Nitrogen-vacancy (NV) centers in diamond are extremely promising solid-state spin quantum sensors for magnetic field in recent years. The rapid development of NV-ensemble magnetometry has put forward higher requirements for high-speed data acquisition, real-time signal processing and analyzing, etc. However, the existing commercial instruments are bulky and expensive, which brings extra complexity to the weak magnetic field detection experiment and hinders the practicality and miniaturization of NV-ensemble magnetometry. Here, we report on an integrated and scalable experimental system based on a field-programmable-gate-array (FPGA) chip assisted with high-speed peripherals for NV-ensemble magnetometry, which presents a compact and compatible design containing high-speed data acquisition, oscilloscopes, signal generator, spectrum analyzer, lock-in amplifier, proportional-integral-derivative feedback controller, etc. To verify its applicability and reliability in experiments, various applications, such as optical magnetic resonance detection, optical cavity locking, and lock-in NV magnetometry, are conducted. We further realize the pump-enhanced magnetometry based on NV center ensembles using the optical cavity. Through the flexible FPGA design approach, this self-developed device can also be conveniently extended into atomic magnetometer and other quantum systems.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

AIP Publishing

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3