Flow2Mesh: A flow-guided data-driven mesh adaptation framework

Author:

Yu JianORCID,Lyu HongqiangORCID,Xu RanORCID,Ouyang WenxuanORCID,Liu XuejunORCID

Abstract

Mesh adaptation is crucial in numerical simulation, providing optimal resource allocation for accurately capturing physical phenomena. However, when applied to Computational Fluid Dynamics (CFD) problems with complex multi-scale properties, existing adaptation methods face huge challenges due to the high computational cost of solving auxiliary partial differential equations (PDEs) and the difficulty in aligning the flow features with mesh geometric features. In this work, an end-to-end data-driven mesh adaptation framework, Flow2Mesh, is proposed to address these challenges by adopting a hybrid modeling strategy to construct the mapping from pixelated flow-fields to graph-based meshes. It achieves a rapid and accurate one-step mesh adaptation via a perceptual feature network (PFN) and a mesh movement network (MMN). PFN extracts the global perceptual features from flow-fields to enhance flow feature representation and mesh resolution independence. In MMN, these features are utilized to deform the initial mesh to a topology-invariant adaptive mesh by a proposed physically driven mesh convolutional network. It considers the inherent mesh geometric information for efficient node feature aggregation and alignment of mesh density with a flow-field structure. To generate high-quality adaptive meshes, various mesh-related losses are designed to regularize the mesh movement and alleviate the mesh tangling. Experiments in CFD scenarios demonstrate the generalization of our model to different design parameters and mesh configurations. It takes three orders of magnitude less time to generate similar meshes than the PDE-based method. The results exhibit the potential of Flow2Mesh to be a flexible and reliable tool for rapid mesh adaptation in scientific and industrial fields.

Funder

Aeronautical Science Foundation of China

Publisher

AIP Publishing

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3