Modeling velocity in a compound channel with co-existing emergent and submerged vegetation

Author:

Hu Ruichang1ORCID,Zhang Jianmin1ORCID

Affiliation:

1. State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China

Abstract

Vegetation on a floodplain, which contains both emergent vegetation and submerged vegetation, has a considerable influence on the velocity profile of the channel. In this study, a modified analytical model, which considers interactions within the vegetation, is developed based on the Shiono and Knight method (SKM) and the concept of the two-layer model to obtain the transverse distribution of the depth-averaged streamwise velocity in a compound channel with emergent and submerged vegetation. This analytical model includes the influence of secondary flows, lateral shear stress, bed friction, and the drag force caused by the vegetation. The aforementioned model is then employed in a straight compound channel, which contained various types of vegetation. Using suitable boundary conditions, the calculated data are found to be consistent with the experimental data. Subsequently, the effects of dimensionless eddy viscosity coefficient ( λ), the depth-averaged secondary flows coefficient, and the impact coefficient β on the model are analyzed. It finds that the λ has a clear effect on the main channel region, but the depth-averaged secondary flows coefficient ([Formula: see text]) has only a definite effect in the slope sub-region. The β value is significantly less than 1 for the condition of the vegetation with a variable frontal width. The model proposed in the present work can provide a guidance for the investigation of the flow characteristics of the various vegetated channel.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3