Exploring the synergy between hot-electron dynamics and active plasmonics: A perspective

Author:

Goswami Anjan1ORCID,Kim Andrew S.1ORCID,Cai Wenshan12ORCID

Affiliation:

1. School of Electrical and Computer Engineering, Georgia Institute of Technology 1 , Atlanta, Georgia 30332, USA

2. School of Materials Science and Engineering, Georgia Institute of Technology 2 , Atlanta, Georgia 30332, USA

Abstract

Physical processes involving hot electrons, including their generation, transport, injection, and relaxation, have been an extensive area of research. The most widely utilized method for actuating the creation of hot electrons involves the excitation of plasmonic modes followed by their non-radiative decay, channeling the energy into these energetic carriers. Since plasmonics has already evolved into a mature field of scientific exploration, active plasmonic devices serve as an ideal platform to study hot-electron physics. In this Perspective article, we will provide the reader with a comprehensive outline of the physics underlying hot-electron dynamics. Emphasis will be placed on the characteristic timescales involved with the lifecycle of hot electrons, the generation and decay mechanisms of surface plasmon-induced hot electrons, and the material platforms suitable for such a study. Then, we will move on to discuss different temperature models used to explain the evolution of hot electrons and the changes in the optical properties of the materials they are generated in or injected into. Finally, we will focus on some of the interesting optical phenomena occurring at ultrafast timescales mediated by hot-carrier dynamics. Such a discussion is expected to incorporate valuable insights into our understanding of the synergistic relationship between hot-electron dynamics and active plasmonics, thereby paving the way for novel applications involving optoelectronics and energy conversion.

Funder

National Science Foundation

National Aeronautics and Space Administration

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3