Effect of small pre-strain on the resistance of molybdenum [100] single crystal to high strain rate deformation and fracture

Author:

Kanel G. I.12ORCID,Garkushin G. V.12ORCID,Savinykh A. S.12ORCID,Razorenov S. V.12ORCID,Paramonova I. V.3,Zaretsky E. B.4ORCID

Affiliation:

1. Institute of Problems of Chemical Physics of the RAS, Semenova Avenue 1, Chernogolovka, Moscow 142432, Russia

2. Joint Institute for High Temperatures of the RAS, Izhorskaya Street 13 Bd. 2, Moscow 125412, Russia

3. LUCH Research and Production Association, Research and Development Institute, Federal State Unitary Enterprise, Zheleznodorozhnaya Street 24, Podolsk, Moscow 142103, Russia

4. Ben Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel

Abstract

The evolution of shock compressive pulses and dynamic tensile (spall) strength of pristine and pre-strained (0.6% and 5.4% compression) samples of pure [100]-oriented molybdenum single crystals were studied in a series of planar impact tests accompanied by continuous monitoring of the free surface velocity of the samples by an optic velocimeter. The impact loading of Mo samples of different thicknesses was produced by copper impactors accelerated in the smooth bore gun up to a velocity of about 350 m/s. Analyzing the recorded waveforms showed that pre-straining results in a substantial decrease of the molybdenum Hugoniot elastic limit while the dynamic tensile (spall) strength increases with pre-straining. The spall fracture of all tested (and spalled) samples was found to be brittle and characterized by a weak dependence of spall strength on the tensile strain rate. The obtained results are discussed in the terms of generally accepted theories of elastic precursor decay in ductile and spall fracture in brittle solids.

Funder

Research and development project

State assignment

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3