The importance of laser wavelength for driving inertial confinement fusion targets. II. Target design

Author:

Schmitt Andrew J.1ORCID,Obenschain Stephen P.1ORCID

Affiliation:

1. Plasma Physics Division, Naval Research Laboratory , Washington DC 20375, USA

Abstract

We describe details of radiation-hydrodynamics simulations of directly driven targets for inertial confinement fusion using laser drivers with different laser wavelengths. Of particular interest here are comparisons of frequency-tripled glass (laser wavelength 351 nm) lasers with the argon fluoride (193 nm) and krypton fluoride (248 nm) excimer lasers and the effects that these laser wavelengths have on the target designs. We explore the effect these drivers have on the compromise involved between lowering laser plasma instabilities (LPIs) or hydrodynamic instabilities while providing high gains and seek to quantify this trade-off. Short-wavelength drivers have significant advantages, primarily in using less power and energy to drive targets. Additionally, they expand the allowed operating regime that is constrained by LPI avoidance and the production of higher pressures needed for more hydrodynamically stable targets. Potential disadvantages to shorter drive wavelengths, such as increased imprint, are examined and found to be unimportant.

Funder

U.S. Department of Energy

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3